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Interface fluctuations under shear
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Coarsening systems under uniform shear display a long time regime characterized by the presence of highly
stretched and thin domains. The question then arises whether thermal fluctuations may actually destroy this
layered structure. To address this problem in the case of nonconserved dynamics, we study an anisotropic
version of the Burgers equation, constructed to describe thermal fluctuations of an interface in the presence of
a uniform shear flow. As a result, we find that stretched domains are only marginally stable against thermal
fluctuations ind52, whereas they are stable ind53.
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The dynamics of phase separation in systems quenc
below their critical temperature is substantially modifi
when an external shear is applied. This is true both for
case of conserved dynamics~spinodal decomposition in bi
nary fluids! and nonconserved dynamics~coarsening in Ising
spin systems!. In the simplest theoretical case in which th
sample is confined between two boundaries moving at a c
stant relative velocity, intuition suggests that the growi
domain structure becomes anisotropic, with domains hig
stretched in the direction of the flow. This fact is now we
established by many experimental@1# and theoretical inves
tigations @2–6#: it has been shown that the growth of th
domains is enhanced along the flow direction, while it is le
clear whether the transverse growth rate is unaffected by
shear or depressed by it. In either case, the long time e
of the shear is to form a structure of very long and~rela-
tively! thin domains.

A natural question in this context is to what extent th
layered structure is stable against thermal fluctuations: l
and thin domains may develop fluctuations, transverse
their main axis, that grow large enough to break them. Si
lar stretching-and-breaking mechanisms have been prop
before @5,6#, in particular to argue that the anisotropic d
main growth may eventually reach a steady state at late ti
@5#. However, the effect of the shear is not only to stretch
domains, but also to smooth their surfaces, and the net re
of the two effects is difficult to predict. In order to clarif
this problem, a suitable model for the growth of a surfa
under shear must be analyzed.

Unfortunately, not many analytic studies of doma
growth under shear exist. In particular, conserved dynam
and spinodal decomposition have been analytically con
ered mainly in the limit of infinite dimension of the orde
parameter@3#, where no domain interfaces are present. T
situation is better in the simpler case of nonconserved
namics, where zero-temperature coarsening under shea
recently been studied analytically@4#. Our task is therefore to
study the effect of thermal fluctuations in the case of n
conserved dynamics under shear. To this end, we will in
duce a stochastic equation for a scalar fieldh(xW ,t) represent-
ing the height of a fluctuating interface above its flat grou
state. This equation will take into account the smooth
effect of the shear flow, which in fact gives origin to a no
linearity of the Burgers type.
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Consider an interface separating two regions with op
site order parameter. When the temperature is small but n
zero, there will be some fluctuations, resulting in a non
profile parametrized by the heighth(xW ,t). In the following,
we will indicate withd the total dimension of the space, an
with d8 the dimension of the substrate spanned byxW , that is,
d5d811. In the absence of shear, the free-energy cost
nonflat profile is given byF5(s/2)*dxW (¹W h)2, wheres is
the surface tension, and the corresponding Langevin eq
tion coincides with the standard Edwards-Wilkinson~EW!
growth equation@7#,

] th5n¹2h1j, ~1!

wheren is a diffusion coefficient~equal tos divided by a
kinetic coefficient! andj(xW ,t) is a d-correlated noise,

^j~xW ,t !j~xW8,t8!&5Dd~xW2xW8!d~ t2t8!. ~2!

The noise strengthD is proportional to the temperature. As
well known, due to its linearity a simple scaling analysis
the EW equation gives the exact critical exponents. Un
the rescalingx→bx, t→bz0t, and h→bx0h, we have n
→bz022n andD→bz022x02d11D. By imposing scale invari-
ance, we obtainz052 andx05(32d)/2. Even though the
EW equation is not suitable for describing interface fluctu
tions when a shear is present, it is interesting to see wha
EW exponents would predict for the stability of the stretch
domains. Ford52, the investigation of@4# gives two length
scales,L i(t)5O(t) and L'5O(1) ~up to logarithmic fac-
tors!. Within the context of the EW equation, the transver
fluctuations will grow as

h;tx0 /z0F~ t/L i
z0!, ~3!

whereF is a scaling function with the limiting formsF(0)
5const, F(s);s2x0 /z0 for s→`. In writing down ~3!, we
have assumed thatL i is a fixed length scale, while actually
is growing with time. The interpretation of~3! is, however,
simple. If t!L i

z0 , the domains are coarsening faster than
interfacial fluctuations, and we can effectively setL i to in-
finity. Thenh;tx0 /z0. On the other hand, ift@L i

z0 , the fluc-
tuations are coarsening faster than the domains and eve
©2001 The American Physical Society02-1
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ally equilibrate on the scaleL i . This corresponds to the larg
argument limit of the scaling variable in~3!, giving h;L i

x0 .
Combining these two limits gives

h;min~ tx0 /z0,L i
x0!. ~4!

In d52, this givesh;t1/4, while L'50(1). Thus, thermal
fluctuations would eventually disrupt the domain structu
and destroy the coarsening state. Ind53, on the other hand
it has been found that@4# L i(t)5O(t3/2) and L'(t)
5O(t1/2). In this case,x050 ~logs!, so conventional EW
thermal roughening would not destroy the domains, sinch
!L' . As we shall see, the inclusion of shear in Eq.~1! will
modify these results. In particular, the instability of the d
mains ind52 will be reduced, while stability ind53 will
be confirmed.

When a shear flow is present, the EW equation mus
modified. We will consider a standard shear velocity pro
uW , with flow along thex direction and shear gradient perpe
dicular to the surface. Let us label this last direction byz,
such that

uW 5gzeW x , ~5!

whereg is the shear rate. In this way, we break the symm
try between thex direction and the remaining (d821) direc-
tions xW' . Note that the growth is orthogonal to the she
flow: this is what happens to the domain walls in the lon
time limit of a coarsening process under shear. The fi
h(xW ,t) is now dragged in thex direction by an amount pro
portional toh itself, that is,] t→] t1gh]x . The correct equa-
tion for h(xW ,t) therefore becomes

] th1gh]xh5nx]xxh1n'¹'
2 h1j, ~6!

where we have introduced separate diffusion constantsnx
andn' . For d851 (d52), Eq.~6! is nothing other than the
Burgers equation@8#. This can be mapped onto the Karda
Parisi-Zhang~KPZ! equation@9# with space-correlated noise
via the transformationh5]xĥ, i.e., h]h→ 1

2 ](]ĥ)2, yielding
the KPZ equation forĥ. Such a case has been studied in@10#.
In the generic dimension, Eq.~6! is anisotropic and was firs
introduced in@11#, in the context of a model of sandpile
and further studied in@12#. A standard method for the analy
sis of stochastic nonlinear equations is the dynam
renormalization-group~RG! approach, first used in this con
text in @13#. Here, we will briefly review those RG results fo
Eq. ~6! that are most relevant for our purpose. We start
analysis of Eq.~6! by finding the bare scaling dimensions
the parameters. Under the anisotropic rescaling,

x→bx, xW'→bzxW' , t→bzt, h→bxh, ~7!

we obtain

nx→bz22nx , n'→bz22zn' , g→bx1z21g,
~8!

D→bz22x212(d22)zD.
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Inserting the EW exponentsx0 and z0 found above forg
50 into the scaling equation forg gives g→b(52d)/2g,
showing thatdc55 is the critical dimension below which th
nonlinearity becomes relevant. Thus, ford,5 the EW expo-
nents are no longer correct and an RG approach beco
necessary.

The Burgers equation is known to be invariant unde
Galilean transformation. In the present context, we have
equivalent symmetry, namely the invariance of Eq.~6! under
a coordinate transformation that preserves the original fo
of the shear flow. Indeed, from Eq.~5! we havex;ght, and
therefore if we vertically shift the interface,h→h1h0, the
equation is invariant provided that we make the transform
tion x→x1gh0t. Basically, this is just translational invari
ance in thez direction. This exact symmetry must be pr
served by the RG transformation. An immedia
consequence is thatg cannot be perturbatively corrected in
RG analysis, and we must set to zero its bare scaling dim
sion in Eq.~8!. In this way, a relation between dynamic an
growth exponents is obtained:

x1z51. ~9!

The remarkable feature of Eq.~6! is that there are two furthe
parameters whose bare scaling dimensions are not pertu
tively changed, namelyn' and the noise strengthD. To see
this, we introduce the response function, defined in Fou
space asG(kW ,v)5^]h(kW ,v)/]j(kW ,v)&. The bare response
function, G0(kW ,v), is obtained from Eq.~6! with g50:
G0(kW ,v)5@2 iv1nxkx

21n'kW'
2 #21. The exact response

function has the form G(kW ,v)5@2 iv1nxkx
21n'kW'

2

2S(kW ,v)#21. Here S(kW ,v) is the self-energy function
which can be calculated perturbatively ing within an RG
scheme. The key point is that theg vertex in Eq.~6! carries
in Fourier space a factorkx . This means that the self-energ
and also the perturbatively corrected noise correlator, ca
factors ofkx at every order in perturbation theory~in fact,
their leading corrections are of orderkx

2). It follows that there
can be no terms of orderO(k'

2 ) in the self-energy, contrib-
uting to a renormalization ofn' , nor O(1) terms in the
renormalized noise, contributing to the renormalization ofD
@11#. We can therefore set to zero, in Eq.~8!, the bare scaling
dimensions ofn' and D, obtaining in this way two extra
relations among the fixed point exponents:

z52z, ~10!

z52x111~d22!z. ~11!

From Eqs.~9!–~11!, we obtain, ford<5 @11#

z5
6

82d
, x5

22d

82d
, z5

3

82d
. ~12!

From Eqs.~7! and~12!, we can infer the scaling form for the
correlation function in Fourier space, defined b

^h(kW ,v)h(kW8,v8)&5C(kW ,v)d(kW1kW8)d(v1v8). We have
2-2
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C~kW ,v!5
1

kx
2z

f S v

kx
z
,
ukW'u

kx
z D , ~13!

wheref is a scaling function.
It is useful to rescale coordinates and field in order

identify the effective coupling constant of Eq.~6!. The
change of variables,

h→~D/nx
22d/2n'

d/221!1/2h, x'→~n' /nx!
1/2x' ,

~14!
t→~1/nx!t, j→~Dnx

d/2/n'
d/221!1/2j,

amounts to settingnx5n'5D51 and replacing the vertexg
by the effective vertex

ĝ5
gD1/2

nx
22d/4n'

d/421/2
. ~15!

As expected, ford5dc55 this quantity is dimensionless
Using standard RG methods~see, for example,@13,11,10#! it
is possible to obtain the one-loop RG flow equation for
effective coupling constantU5cĝ2, where c5G(3
2d/2)/@8(4p)d/221#. The flow equation reads

dU

dl
5~52d!U2 1

2 ~82d!2U2. ~16!

The trivial fixed point,U50, becomes stable above the cri
cal dimensiondc55, giving the EW exponentsz0 ,x0, cor-
responding toz5z051. No other physical (U.0) fixed
point exists in this phase. The effect of the shear on ther
roughening is therefore negligible above dimensiondc55
and domain-wall fluctuations are isotropic~in the
ys
.

01210
e

al

d8-dimensional subspace parallel to the mean orientation
the wall!. On the other hand, in dimensiond,5 there is an
attractive fixed point atU52e/91O(e2), with e5dc2d.
The effective coupling constant is of ordere, such that close
to the critical dimension the RG expansion is under cont
This fixed point controls the large-scale behavior of Eq.~6!
for d,5 and is associated with the nontrivial exponents~12!.

The scaling exponentx of the interface height is zero fo
d52, while it is negative,x52 1

5 , for d53. From Eq.~4!,
with x0 andz0 replaced by the new exponentsx andz, we
see that in the two-dimensional case the highly elonga
domains are only marginally stable against thermal fluct
tions, sinceL i

x5O(1), tx/z5O(1), and L'5O(1) ~up to
logarithms in each case!. A thermally induced stretching
and-breaking mechanism cannot, therefore, be exclude
this case. On the other hand, ford53 a negative value ofx
means that thermal fluctuations of the interfaces saturat
late times. Thus, in the three-dimensional case ther
roughening is depressed by the shear, and the flow-indu
layered structure of the domains is stable against ther
fluctuations.

In this work, we have shown that interface fluctuatio
under shear, in a system with nonconserved order param
can be described by a stochastic differential equation, w
an anisotropic Burgers nonlinearity, and that the critical e
ponents are known exactly. In this way, it was possible
assess the stability of domains in the late time regime o
system subject to a uniform shear flow.
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