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Interface fluctuations under shear
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Coarsening systems under uniform shear display a long time regime characterized by the presence of highly
stretched and thin domains. The question then arises whether thermal fluctuations may actually destroy this
layered structure. To address this problem in the case of nonconserved dynamics, we study an anisotropic
version of the Burgers equation, constructed to describe thermal fluctuations of an interface in the presence of
a uniform shear flow. As a result, we find that stretched domains are only marginally stable against thermal
fluctuations ind=2, whereas they are stable dr+ 3.
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The dynamics of phase separation in systems quenched Consider an interface separating two regions with oppo-
below their critical temperature is substantially modified site order parameter. When the temperature is small but non-
when an external shear is applied. This is true both for theero, there will be some fluctuations, resulting in a nonflat

case of conserved dynami¢spinodal decomposition in bi- profile parametrized by the heigh(x,t). In the following,
nary fluid9 and nonconserved dynami@arsening in Ising e will indicate withd the total dimension of the space, and
spin systems In the simplest theoretical case in which the v 4/ the dimension of the substrate spannedbshat is
sample is confined between two boundaries moving at a CONy— g’ + 1. In the absence of shear, the free-energy cosi of a

stant relative velocity, intuition suggests that the growing S > = o .
domain structure becomes anisotropic, with domains highlﬁhonﬂat fproflle IS given k()jy:h—(cr/Z)de(V(?) , whereo is
stretched in the direction of the flow. This fact is now well (€ surface tension, and the corresponding Langevin equa-

established by many experimenfal] and theoretical inves- ton coincides with the standard Edwards-Wilkins@zw)

tigations [2—6]: it has been shown that the growth of the 9rOWth equatiori7],
domains is enhanced along the flow direction, while it is less gh=1V2h+ & (1)
clear whether the transverse growth rate is unaffected by the t '

shear or depressed by it. In either case, the long time effe¢lhare 1 is a diffusion coefficien{equal too divided by a
of the shear is to form a structure of very long afmdla- - - - .
tively) thin domains. kinetic coefficient and £(x,t) is a 5-correlated noise,

A natural question in this context is to what extent this
layered structure is stable against thermal fluctuations: long
anq th'n. dO”.‘a'”S may develop fluctuations, transversg Fcf'he noise strengtD is proportional to the temperature. As is
their main axis, that grow large enough to break them. Simi-

lar stretchina-and-breaking mechanisms have been proposi Il known, due to its linearity a simple scaling analysis of
9 : 9 . prop e EW equation gives the exact critical exponents. Under
before[5,6], in particular to argue that the anisotropic do-

. .~ the rescalingx—bx, t—b*t, and h—bXoh, we have v

main growth may eventually reach a steady state at late tlmei b%-2, andD — b%~2X0- 91D By imposing scale invari-

[5]. However, the effect of the shear is not only to stretch the ce W’; obtaize=2 and =(é—yd)/2p Evgn thouah the

domains, but also to smooth their surfaces, and the net res ' Y X0 o 9

of the two effects is difficult to predict. In order to clarify equation Is not _swtable for_ Qescnbmg_mterface fluctua-
tions when a shear is present, it is interesting to see what the

this problem, a suitable model for the growth of a surface . o
under shear must be analyzed. EW exponents would predict for the stability of the stretched

Unfortunately, not many analytic studies of domain domains. Fod =2, the investigation of4] gives two length

growth under shear exist. In particular, conserved dynamic cales,L_Hr(]F)zr?(t) and Lif:r?(l) (up to !oganr:hmlc fac-
and spinodal decomposition have been analytically consi ors). W.'t In t.e context of the EW equation, the transverse
ered mainly in the limit of infinite dimension of the order fluctuations will grow as

parametef3], where no domain interfaces are present. The
situation is better in the simpler case of nonconserved dy-
namics, where zero-temperature coarsening under shear haﬁ . . . . -

recently been studied analytica[l§]. Our task is therefore to WhereF is a scaling function with the limiting forms(0)

— —axo! -
study the effect of thermal fluctuations in the case of non-_ const, F(s)~s ¥0/% for s—o. In writing down (3), we

conserved dynamics under shear. To this end, we will introl@ve assumed tha is a fixed length scale, while actually it

. . - is growing with time. The interpretation @8) is, however,
duce a stochastic equation for a scalar fie{d,t) represent- . 20 . .
ing the height of a fluctuating interface above its flat ground_s'mple'_”t@'l ' the domains are coarsen!ng faster than the
state. This equation will take into account the smoothingnterfacial fluctuations, and we can effectively $gtto in-
effect of the shear flow, which in fact gives origin to a non- finity. Thenh~txo’?. On the other hand, if>L°, the fluc-
linearity of the Burgers type. tuations are coarsening faster than the domains and eventu-

(E(XDEX1))=DS(x—x")8(t—t"). (2)

h~tXo’2oF (t/L}9), 3
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ally equilibrate on the scale|. This corresponds to the large Inserting the EW exponentg, and z, found above fory

argument limit of the scaling variable i#3), givingh~L°. =0 into the scaling equation foy gives y—bG~72y,
Combining these two limits gives showing thad.=5 is the critical dimension below which the
nonlinearity becomes relevant. Thus, tb«5 the EW expo-
h~min(tX0/ZO,|_ﬁ(0)_ (4) nents are no longer correct and an RG approach becomes
necessary.
In d=2, this givesh~t'4 while L, =0(1). Thus, thermal The Burgers equation is known to be invariant under a

fluctuations would eventually disrupt the domain structureGalilean transformation. In the present context, we have an
and destroy the coarsening stated 3, on the other hand, €duivalent symmetry, namely the invariance of Ej.under
it has been found thaf4] LH(t)=O(t3’2) and L, (t) a coordinate transformation that preserves the original form
=0(t"9. In this case,x,=0 (logs), so conventional EW of the shear flow. Indeed, from E(p) we havex~ yht, and
thermal roughening would not destroy the domains] simce therefore if we Vertica”y shift the interfac@,ﬂh"f‘ho, the

<L, . As we shall see, the inclusion of shear in EY. will equation is invariant provided that we make the transforma-
modify these results. In particular, the instability of the do-tion X—x+ yhot. Basically, this is just translational invari-
mains ind=2 will be reduced, while stability ill=3 will ~ ance in thez direction. This exact symmetry must be pre-
be confirmed. served by the RG transformation. An immediate

When a shear flow is present, the EW equation must béonsequence is thatcannot be perturbatively corrected in a
modified. We will consider a standard shear velocity profileRG analysis, and we must set to zero its bare scaling dimen-
u, with flow along thex direction and shear gradient perpen- slon L?] Eq.(8). Int th_|s V\tl)?y_, a(;.elatlon between dynamic and
dicular to the surface. Let us label this last directionzy growth exponents 1S obtained:

such that Yz=1. )

u=yze,, 5 .

Y28 ® The remarkable feature of E(p) is that there are two further
wherey is the shear rate. In this way, we break the symmeParameters whose bare scaling dimensions are not perturba-
try between the direction and the remainingl( — 1) direc- t|r\]{ely chqnge((jj, nan;\elyi and thefnmsg Strsn?md-r'o see
tions )?l. Note that the growth is orthogonal to the sheart IS, we |ntr9 uce the response unction, defined in Fourier
flow: this is what happens to the domain walls in the long-SPace ass(k,)=(dh(k,®)/d¢(k,)). The bare response
time limit of a coarsening process under shear. The fieldunction, Go(k,w), is obtained from Eq(6) with y=0:
h(x,t) is now dragged in th& direction by an amount pro- Gg(k,w)=[—iw+vki+v ki]"1. The exact response
portional toh itself, that is,d;— d;+ yhd, . The correct equa- function has the form G(K,w)=[—iw+ rki+v, Kk?

tion for h(x,t) therefore becomes —3(k,w)]" . Here 3(k,w) is the self-energy function,
) which can be calculated perturbatively 4nwithin an RG
dih+yhoh=wvydh+v, Vih+§, (6)  scheme. The key point is that thevertex in Eq.(6) carries

. e . in Fourier space a factds, . This means that the self-energy,
where we haye introduced separate diffusion constants, anq also the perturbatively corrected noise correlator, carry
andv, . Ford’=1 (d=2), Eq.(6) is nothing other than the ¢,.t6r5 ofk, at every order in perturbation theofin fact,
Burge_zrshequatlorﬁS]. Th's. can be_ r:napped ontolthedKar_dar- their leading corrections are of ordef{). It follows that there
P.a”S"Z angkpP2) gquit|0|:{9] wit spacle—co[rtaz atg r?0|se, can be no terms of orde@(kf) in the self-energy, contrib-
via the transformatiom=d,h, i.e.,hdh—34(dh)7, yielding  yting to a renormalization of, , nor O(1) terms in the
the KPZ equation foh. Such a case has been studieflli].  renormalized noise, contributing to the renormalizatioof
In the generic dimension, E¢G) is anisotropic and was first [11]. We can therefore set to zero, in E§), the bare scaling
introduced in[11], in the context of a model of sandpiles, dimensions ofy, and D, obtaining in this way two extra
and further studied if12]. A standard method for the analy- relations among the fixed point exponents:
sis of stochastic nonlinear equations is the dynamic

renormalization-grougRG) approach, first used in this con- z=2¢, (10)
text in[13]. Here, we will briefly review those RG results for
Eq. (6).that are most .relgvant for our purpose. We _start the z2=2x+1+(d—2)¢. (11)
analysis of Eq(6) by finding the bare scaling dimensions of
the parameters. Under the anisotropic rescaling, From Egs.(9)—(11), we obtain, ford<5 [11]
x—bx, x,—bf,, t—bt, h-bth, (7 6 2 d .3 "
Z=——, X=%5—, (=—.
we obtain 8—d 8- 8-d
ve—b? %u,, v, —b¥ %y, y—bXTETL,y, From Egs.(7) and(12), we can infer the scaling form for the
(8) correlation function in Fourier space, defined by
D—b? 2x~17(d=2)¢p, (h(k,w)h(K',"))=C(K,0) S(k+K')5(w+'). We have
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) 1 o |IZJ_| d’-dimensional subspace parallel to the mean orientation of
C(k,w)=—f — | (13)  the wall. On the other hand, in dimensiah<5 there is an
K™\ ke Kk attractive fixed point all =2¢/9+ O(€?), with e=d.—d.

The effective coupling constant is of ordersuch that close

wheref is a scaling function. he critical di on th O d |
It is useful to rescale coordinates and field in order to!© the critical dimension the RG expansion is under control.

identify the effective coupling constant of E@6). The This fixed point controls the large-scale behavior of Ej.

change of variables, for d<5 and is associated with the nontrivial exponei®.
The scaling exponent of the interface height is zero for
h—(D/v2~ 929271120 - % (v, 1v, )Y, , d=2, while it is negativey= — £, for d=3. From Eq.(4),
(14  with yo andz, replaced by the new exponengsandz, we
t—(Ur)t, €Dy HV%, see that in the two-dimensional case the highly elongated

domains are only marginally stable against thermal fluctua-
tions, sinceL'=0(1), t¥*=0(1), andL, =0(1) (up to
logarithms in each cageA thermally induced stretching-

amounts to setting,= v, =D =1 and replacing the vertex
by the effective vertex

yD12 and-breaking mechanism cannot, therefore, be excluded in
Y= S ar a1 (15  this case. On the other hand, fd+=3 a negative value of
by V) means that thermal fluctuations of the interfaces saturate at

As expected, ford=d,=5 this quantity is dimensionless. late times. Thus, in the three-dimensional case thermal

Using standard RG methodsee, for exampld13,11,10) it roughening is depressed by the shear, and the flow-induced

is possible to obtain the one-loop RG flow equation for theIayered structure of the domains is stable against thermal

. . Y -~ fluctuations.
effective = coupling - constantU=cy", where c=I'(3 In this work, we have shown that interface fluctuations
—d/2)/[8(4w) 1. The flow equation reads

under shear, in a system with nonconserved order parameter,
du can bg desc_ribed by a stoc_hasti_c differential equat_ipn, with
W=(5—d)U—%(8—d)2U2. (16) an anisotropic Burgers nonllnearlt_y, and that the crlthal ex-
ponents are known exactly. In this way, it was possible to
assess the stability of domains in the late time regime of a

The trivial fixed point,U =0, becomes stable above the criti- . .
system subject to a uniform shear flow.

cal dimensiond;=5, giving the EW exponentgy, xo, COr-
responding tol={¢,=1. No other physical Y>0) fixed A.B. thanks R.K.P. Zia and S. Ramaswamy for useful
point exists in this phase. The effect of the shear on thermaliscussions. This work was supported by EPSRC Grant No.
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